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Abstract
We investigate dynamics of the SU(1, 1) coherent states with the use of the
group transformations diagonalizing the coherence preserving Hamiltonian
driving the physical system. The model physical system we consider may
be viewed as a particular case of the generalized time-dependent harmonic
oscillator, or as a generalization of the degenerate parametric amplifier, with
the pumping field having modulated amplitude and a nonresonant phase. A
Hamiltonian of such a system is given as a linear combination of the SU(1, 1)
generators with time-dependent coefficients, and the group transformations,
mentioned above, transform this Hamiltonian to an expression containing only
one generator, i.e. diagonalize the Hamiltonian. Trajectories of the complex
coherent state parameter in the phase space (Lobachevskii plane) can be
divided into two classes: compact trajectories never approaching the unit circle
(boundary of the phase space) and noncompact trajectories approaching the unit
circle from inside asymptotically, after sufficiently long time. The character of
the dynamics is reflected by the time behaviour of the parameters of the group
transformation diagonalizing the Hamiltonian. The main observation is that in
the case of noncompact dynamics absolute values of the group parameters
increase indefinitely, although in some cases they may exhibit a singular
behaviour with regions of rapid variations, sudden changes of their values
or cusplike singularities. For compact dynamics the group transformation
parameters remain bounded and exhibit an oscillatory behaviour as functions
of time.
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1. Introduction

The purpose of this paper is to study dynamics of the coherent states of a model physical
system with a Hamiltonian given as a linear combination of the SU(1, 1) group generators
with time-dependent coefficients. Examples of physical systems which can be described
by a Hamiltonian of this type may be given by the time-dependent harmonic oscillator or
degenerate parametric amplifier. The dynamics of such physical systems in general, and their
coherent states in particular, has been extensively studied from various points of view in the
past. A general analysis of the dynamical systems with time-dependent Hamiltonians has
been worked out by Lewis and Riesenfeld [1] with the use of time-dependent invariants having
time-independent eigenvalues. In the same paper this method was used to analyse, among
other things, the time-dependent harmonic oscillator. The quadratic Hamiltonians were also
studied, among other things, by Xiao-Chun Gao et al [2], where the exact solution for the
generalized time-dependent harmonic oscillator was found, de Toledo-Pisa [3], who studied
time evolution of mean values of the observables or, recently, Cervero and Lejaretta [4], who
discussed the canonical formalism for the time-dependent harmonic oscillator. The adiabatic
phase in physical systems described by quadratic Hamiltonians was analysed by Jackiw [5],
Xiao-Chun Gao [2] and de Sousa Gerbert [6].

A general Hamiltonian bilinear in coordinates and momenta (or, equivalently, quadratic
in the annihilation and creation operators of the harmonic oscillator) can be expressed as a
linear combination of theSU(1, 1) group generators. Therefore, the group-theoretical methods
using this particular dynamical group are of great usefulness in analysing dynamics of such
systems. For a review of the applications of algebraic methods to the description of various
dynamical systems, among them the time-dependent harmonic oscillator, see for instance [7].
Time evolution of the harmonic oscillator with time-dependent frequency was also studied
recently by means of group theoretical methods by Penna [8], where unitary SU(1, 1)-group
transformations diagonalizing the Hamiltonian were used. In the present paper we analyse
dynamics of the SU(1, 1) coherent states using in fact methods similar to those developed
in [8].

A systematic classification of the coherent states can be based on group theory [9]. For
instance, coherent states related to the classical states of a quantum harmonic oscillator can be
constructed from the Weyl–Heisenberg group H4. A general method for constructing coherent
states for an arbitrary Lie group has been given by Perelomov [10], where the coherent states
were defined as generated by operating on the vacuum state with an appropriately chosen
displacement operator. Of particular importance are the coherent states of the SU(1, 1) group,
which can be characterized by diminished quantum fluctuations of one of the canonically
conjugate variables (squeezed states).

Classical dynamics of the SU(1, 1) coherent states, generated by a classical Hamiltonian
given as the coherent state expectation value of the quantum Hamiltonian, has been also studied
recently in various contexts. In particular, the Hamiltonian linear in the group generators [11]
is a coherence preserving Hamiltonian [12], i.e. an initially SU(1, 1)-coherent state remains
coherent during time evolution. To give a few examples of the classical dynamics of SU(1, 1)
Hamiltonians, Gerry and Silverman [13] and Gerry [14] gave the path-integral formulation of
the dynamics of SU(1, 1) coherent states, and classical dynamics of the SU(1, 1)Hamiltonians
linear and quadratic in the group generators was investigated by Gerry and Kiefer [15,16] and
Gortel and Turski [17]. Application of the classical dynamics of SU(1, 1) coherent states to
the degenerate parametric amplifier can be found, for instance, in [12].

Presently we shall study phase space dynamics of SU(1, 1) coherent states using a method
of unitary group transformations. A similar method has been used by Penna [8] in the
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investigation of compact and noncompact dynamics of the time-dependent harmonic oscillator.
The Hamiltonian we use here, given as a linear combination of SU(1, 1) generators, is similar
to that studied by Dattoli et al [18] with the time-dependent coefficients which will be specified
later. It can, in fact, be viewed as a generalization of the degenerate amplifier Hamiltonian
with the pumping field amplitude dependent on time, and with nonresonant frequency, not
equal to the frequency of the quantized field mode. In this case no analytic solutions of the
evolution equations are known and numerical methods have to be used. The phase space of the
SU(1, 1) coherent states is a curved space, in fact the Lobachevskii plane, represented by the
interior of the unit circle with non-Euclidean geometry [13, 19]. We analyse dynamics of the
SU(1, 1) coherent states, generated by a Hamiltonian given in terms of the bosonic creation
and annihilation operators a†, a as

H = 1
2 h̄ω

(
a†a + aa†

)
+ 1

2 h̄χ(t)a†2 + 1
2 h̄χ

∗(t)a2. (1.1)

Time evolution of the coherent states will be visualized by phase space trajectories, which,
as we shall see, can be divided into two classes. To the first class belong those trajectories
which occupy a bounded region in the Lobachevskii plane and never approach the unit circle
(compact trajectories). Trajectories which after sufficiently long time become arbitrarily close
to the unit circle (but do not reach it) belong to the second class of noncompact trajectories.
We shall investigate phase space dynamics for a ‘pumping field’ χ(t) of the type

χ(t) = c(t)e−iα(t) (1.2)

with

c(t) = χ0 cosω1t α(t) = ω2t. (1.3)

Our main purpose is to study the type of dynamics (compact or noncompact) depending on
the values of the frequencies ω1, ω2 and the amplitude χ0.

A very efficient tool for the description of the dynamics of the time-dependent harmonic
oscillator can be provided by the method of unitary SU(1, 1) transformations with the time-
dependent parameters [8]. The group transformation will be chosen to reduce the Hamiltonian,
given originally as a combination of all three elements of Lie algebra, to only one generator,
either compact or noncompact (the group has two compact and one noncompact generators).
This method is used here to analyse the phase space dynamics of the SU(1, 1) coherent states.
Dynamics of the transformed coherent state, driven by the reduced Hamiltonian, can then be
found in a simple way. Applying later the inverse transformation one can determine the time
evolution of the initial coherent state and trajectories in the phase space. The crucial point is that
group transformations preserve coherence, so that the transformed state is also an SU(1, 1)
coherent state, driven by the reduced, coherence preserving Hamiltonian. As will be seen
in subsequent sections, the type of time dependence of the group parameters determining the
appropriate group transformation reflects the character of phase space trajectories. For compact
trajectories the group parameters remain bound and oscillate, whereas in the noncompact case
their absolute values increase indefinitely. Numerical analysis of the differential equations
fulfilled by group parameters shows that also in the noncompact case the parameters may
oscillate, but with increasing amplitude. In fact, these oscillations have rather a character of
rapid, practically discontinous, jumps from positive to negative values with increasing absolute
value.

The paper is organized as follows. In section 2 we describe the model of the generalized
time-dependent harmonic oscillator under consideration and give explicit forms of the unitary
transformations reducing the Hamiltonian to a single element of the SU(1, 1) Lie algebra.
Section 3 is devoted to general discussion of the phase space dynamics of SU(1, 1) coherent
states, based on the results of section 2 and transformation formulae of the phase space induced
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by the group transformations. In section 4 we discuss phase portraits of the SU(1, 1) coherent
states, obtained by solving numerically equations for the trajectories and group parameters. A
relation between the character of trajectories and behaviour of group parameters as functions
of time will be clearly visible here. This section contains also qualitative analytic discussion
of the coherent state orbits based on the Floquet theory, and of the singular behaviour of group
parameters. Section 5 contains final remarks, and transformation formulae of group generators
under group transformations are summarized in appendix A. In appendix B a relation is shown
between parameters of the SU(1, 1) coherent state and parameters of a group transformation
diagonalizing the Hamiltonian.

2. The model and reduction of the Hamiltonian

We consider a model physical system described by the Hamiltonian (1.1) which can be written
as a linear combination of the SU(1, 1) group generators with time-dependent coefficients

H = 2h̄ωK0 + h̄χ(t)K+ + h̄χ∗(t)K− (2.1)

where the operators K0, K+ and K− have the following representation in terms of the usual
creation and annihilation operators of the Weyl–Heisenberg group [16, 20]:

K0 = 1
4

(
a†a + aa†

)
K+ = 1

2a
†2 K− = 1

2a
2. (2.2)

This representation corresponds to the values of the Bargmann index k equal to 1/4 and
3/4 [21]. In terms of the photon number states k = 1/4 corresponds to the subspace with
even photon number and k = 3/4 to odd photon number [16]. The Hamiltonian (2.1) can be
expressed in terms of the Hermitian generators

K0 K1 = 1
2 (K+ + K−) K2 = − i

2
(K+ − K−) (2.3)

as

H = 2h̄ωK0 + 2h̄c(t) cosα(t)K1 + 2h̄c(t) sin α(t)K2 (2.4)

where the coupling has been assumed to have the form (1.2)

χ(t) = c(t)e−iα(t). (2.5)

Hermitian generators fulfill well known commutation rules

[K1,K2] = −iK0 [K2,K0] = iK1 [K0,K1] = iK2. (2.6)

As the SU(1, 1) group is noncompact, its unitary representations are infinite dimensional. We
shall also use the non-Hermitian two-dimensional representation of the group with generators
given in terms of Pauli matrices [14]

κ1 = i

2
σ2 κ2 = − i

2
σ1 κ0 = 1

2σ3. (2.7)

Classical dynamics of SU(1, 1) coherent states [16] is defined as the dynamics generated by
the classical Hamiltonian

Hcl
(
ξ, ξ ∗) = 〈ξ |H |ξ〉 (2.8)

where |ξ〉 is the SU(1, 1) coherent state [13, 22], having the following expansion in terms of
the basis states |n, k〉 with given Bargmann index k:

|ξ, k〉 = (
1 − |ξ |2)k ∞∑

n=0

[
�(n + 2k)

n!�(2k)

]1/2

ξn|n, k〉. (2.9)
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These states can be obtained by action of an appropriate group element on the state |0, k〉
|ξ, k〉 = exp(zK+ − z∗K−)|0, k〉 (2.10)

where z = −(θ/2)e−iφ , ξ = − tanh(θ/2)e−iφ . The parameters θ and φ, with ranges
−∞ < θ < ∞, 0 � φ � 2π , parametrize the group manifold consisting of two unconnected
hyperboloids [11]. The group manifold plays an important role in the classical description of
group dynamics since orbits of the pseudospin vector [11,23] lie on this manifold. Dynamics
of the pseudospin (Bloch) vector, given as an expectation value of the generators, is closely
related to orbits of the coherent states in the Lobachevskii plane by means of the stereographic
image of the group manifold [11]. The equation of motion of the coherent state parameter ξ
is equivalent to the Schrödinger equation for the time evolution operaror S(t)

ih̄ ˙S(t) = H(t)S(t) (2.11)

with S(t) parametrized as

S(t) = eξK+ eδK0 e−ξ∗K−eigK0 (2.12)

in an analogous way as has been done recently in the case of the SU(2) group of the two-
level system [24]. The remaining parameters in (2.12) fulfill δ = −2 ln(1 − |ξ |2) and
ġ = −2ω − 2Re (χξ ∗). It follows from the algebra of group generators that the first three
factors in (2.12) are the same as the displacement operator in (2.10), so the time displacement
operator (2.12) generates, up to a phase factor, the coherent state |ξ〉 from the state |0, k〉.
It follows further from (2.11) that the parameter ξ fulfills the same time evolution equation
as (2.15) below, which follows from the classical Hamiltonian (2.8). The same classical
representation is a natural consequence of the path-integral approach to the SU(1, 1) coherent
states [13]. Another classical representation can be obtained with the use of the bosonic
coherent states, as has been done for example in [17].

The time dependence of the parameter ξ in the classical dynamics generated by (2.8) is
described by the first-order differential equation [13]

ξ̇ = {
ξ,Hcl

(
ξ, ξ ∗)} (2.13)

where the SU(1, 1) Poisson bracket is defined as

{A,B} = (1 − |ξ |2)2

2ikh̄

(
∂A

∂ξ

∂B

∂ξ ∗ − ∂A

∂ξ ∗
∂B

∂ξ

)
. (2.14)

The expectation value (2.8) can be calculated using general formulae obtained by Lisowski [26],
and together with (2.13) and (2.14) this leads to the Riccati type equation for ξ

ξ̇ = −2iωξ − iχ∗ξ 2 − iχ. (2.15)

This equation can be solved by quadratures for constant χ and for χ of the form χ(t) =
c(t) exp(−2iωt) [12, 27]. In this last case we substitute ξ = ζ exp(−2iωt) and obtain for ζ

ζ̇ = −ic(t)
(
ζ 2 + 1

)
(2.16)

which can be solved by separation of variables. This type of time dependence of χ corresponds
to the degenerate parametric amplifier with time-dependent amplitude of the pumping field.

To analyse the classical phase space dynamics of SU(1, 1) coherent states with
time-dependent coupling χ we shall use unitary group transformations diagonalizing the
Hamiltonian. The time evolution of a quantum state is described by the Schrödinger equation

ih̄∂t |ψ〉 = H(t)|ψ〉. (2.17)

By performing a time-dependent unitary transformation of the state |ψ〉:
|φ〉 = U(t)|ψ〉 (2.18)
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we can write (2.17) in an equivalent form

ih̄∂t |φ〉 = H1(t)|φ〉 (2.19)

where the transformed Hamiltonian reads

H1 = UHU † − ih̄UU̇ †. (2.20)

We seek a group transformation U(t) for which the transformed Hamiltonian contains only
the compact generator K0 [8]. First we perform the unitary transformation

U0(t) = e−iα(t)K0 (2.21)

which, upon using transformation formulae given in the appendix, transforms the
Hamiltonian (2.4) to

H ′ = U0HU
†
0 − ih̄U0U̇

†
0 = 2h̄

(
ω − α̇

2

)
K0 + 2h̄c(t)K1. (2.22)

Next we apply

U1 = eiϕK1 eiβK2 (2.23)

with time-dependent parameters ϕ and β. This gives

H1 = U1H
′U †

1 − ih̄U1U̇
†
1

= 2h̄K0

[(
ω − α̇

2

)
cosh β − c sinh β

]
cosh ϕ

+2h̄K1

[
−

(
ω − α̇

2

)
sinh β + c cosh β

]

+2h̄K2

[(
ω − α̇

2

)
cosh β − c sinh β

]
sinh ϕ

−h̄β̇ (K0 sinh ϕ + K2 cosh ϕ) − h̄ϕ̇K1 (2.24)

where again the transformation formulae for the generators were used. The coefficients of
noncompact generators K1 and K2 in (2.24) vanish if the transformation parameters ϕ and β

fulfill a system of two coupled differential equations

ϕ̇ = −2

(
ω − α̇

2

)
sinh β + 2c cosh β (2.25a)

β̇ =
[

2

(
ω − α̇

2

)
cosh β − 2c sinh β

]
tanh ϕ. (2.25b)

The transformed Hamiltonian H1 has the form

H1 = 2h̄%(t)K0 (2.26)

where

%(t) =
(
ω − α̇

2

)
cosh β − c sinh β

cosh ϕ
. (2.27)

We shall also use an approach in which the Hamiltonian (2.4) is reduced to the form in
which only the noncompact operator K1 is left. The corresponding unitary transformation is
given by

U = eiµK2 eiγK0 (2.28)



Dynamics of the SU(1, 1) coherent states 8087

with time-dependent parameters µ and γ . This gives

H2 = UH ′U † − ih̄UU̇ †

= 2h̄K0

[(
ω − α̇

2

)
cosh µ − c cos γ sinh µ

]

+2h̄K1

[
−

(
ω − α̇

2

)
sinh µ + c cos γ cosh µ

]
−2h̄c sin γK2 − h̄γ̇ (K0 cosh µ − K1 sinh µ) − h̄µ̇K2. (2.29)

The coefficients of K0 and K2 vanish when µ and γ fulfill

µ̇ = −2c sin γ (2.30a)

γ̇ = 2

(
ω − α̇

2

)
− 2c cos γ tanh µ. (2.30b)

The transformed Hamiltonian has now the form

H2 = 2h̄�(t)K1 (2.31)

where

�(t) = c(t)
cos γ

cosh µ
. (2.32)

3. Dynamics of the SU (1, 1) phase space

Solutions of equation (2.15) can be divided into two classes. To the first class belong those
solutions for which

|ξ | � a < 1 (3.1)

and trajectories ξ(t) in the Lobachevskii plane remain in a compact region inside the unit circle.
For the solutions from the second class

lim
t→∞ |ξ | = 1 (3.2)

the phase space trajectories approach asymptotically the unit circle, but never reach it. In this
case the trajectories occupy a noncompact region, i.e. the interior of the unit circle without
boundary. These two classes of trajectories can be illustrated by an example solution of (2.15)
with constant c > 0 and α = ω2t with ω2 < 2ω. In this case we have

ξ(t) = e−iω2t
ξ1(ξ0 − ξ2) − ξ2(ξ0 − ξ1)e−2i%t

ξ0 − ξ2 − (ξ0 − ξ1)e−2i%t
(3.3)

where ξ0 is the initial value of ξ and

ξ1 = −c−1

[
ω − ω2

2
−

√(
ω − ω2

2

)2
− c2

]
(3.4a)

ξ2 = −c−1

[
ω − ω2

2
+

√(
ω − ω2

2

)2
− c2

]
(3.4b)

% =
√(

ω − ω2

2

)2
− c2. (3.4c)

For c < ω−ω2/2 the frequency % is real and ξ(t) remains in a compact region inside the unit
circle. The dynamics of the system is compact. If, however, c > ω − ω2/2, the frequency %

is purely imaginary, and for positive Im % we have for t → ∞
ξ(t) → e−iω2t ξ2. (3.5)
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It can be seen from (3.4b) that in this case ξ2 is complex and |ξ2| = 1, so that ξ(t) approaches
the unit circle revolving around it with frequency ω2. The dynamics is now noncompact.

On the level of the group transformations equations (2.25) for constant c and α = ω2t

have time-independent solutions given by

ϕ = 0 tanh β = c

ω − ω2/2
(3.6)

and the diagonalized Hamiltonian (2.26) can be written as

H1 = 2h̄
(
ω − ω2

2

) [
1 − c2

(ω − ω2/2)2

]1/2

K0. (3.7)

Note that H1 given by (3.7) becomes non-Hermitian for c > ω − ω2/2. We see that for
compact dynamics of SU(1, 1) coherent states the diagonalized Hamiltonian is expressed by
the compact generatorK0. On the other hand equations (2.30) have time-independent solutions
of the form

γ = 0 tanh µ = ω − ω2/2

c
(3.8)

and then the diagonalized Hamiltonian (2.31) reads

H2 = 2h̄c

[
1 − (ω − ω2/2)2

c2

]1/2

K1 (3.9)

and is Hermitian for c > ω − ω2/2. For noncompact dynamics the diagonalized Hamiltonian
contains the noncompact generator K1.

For time-dependent c and α also the group parameters (ϕ, β) or (µ, γ ) depend on time.
Note, however, that time-dependent group parameters can be also used in the just-discussed
case of constant c, as equations (2.25) and (2.30) have then also solutions varying in time.
With time-dependent group parameters either (2.26) or (2.31) can be used as the diagonalized
Hamiltonian.

To express the phase space parameter of the generalized coherent state, ξ(t), in terms
of (ϕ, β) or (µ, γ ) we make use of the two-dimensional non-Hermitian representation of the
group generators (2.7). In the two-dimensional realization any group element g can be written
as [14]1.

g =
[
a b

b∗ a∗

]
|a|2 − |b|2 = 1. (3.10)

The corresponding group transformation V (g) in the unitary representation with Bargmann
index k acts on the coherent state |ξ〉 in the following way:

V (g)|ξ〉 = eiδ|ζ 〉 (3.11)

where

ζ = aξ + b

b∗ξ + a∗ δ = arg(a − bξ). (3.12)

Using (2.7) and properties of the Pauli matrices we can see that the transformation diagonalizing
the Hamiltonian to the compact form (2.26)

V (g) = U1U0 (3.13)

1 SU(1, 1) is a group of 2 × 2 pseudounitary unimodular matrices leaving invariant the quadratic form |z1|2 − |z2|2.
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with U0 and U1 given by (2.21) and (2.23), respectively, corresponds to the group element of
the form (3.10) with

a =
(

cosh
ϕ

2
cosh

β

2
+ i sinh

ϕ

2
sinh

β

2

)
eiα/2 (3.14a)

b =
(

cosh
ϕ

2
sinh

β

2
+ i sinh

ϕ

2
cosh

β

2

)
e−iα/2. (3.14b)

The classical dynamics of the transformed parameter ζ is generated by the Hamiltonian
(cf (2.26))

Hcl
(
ζ, ζ ∗) = 〈ζ |H1|ζ 〉 = 2h̄%(t)〈ζ |K0|ζ 〉. (3.15)

Using

〈ζ |K0|ζ 〉 = k
1 + |ζ |2
1 − |ζ |2 (3.16)

and the general equations of motion (2.13) and (2.14) we find

ζ̇ = −2i%(t)ζ (3.17)

with a simple solution

ζ(t) = exp

[
− 2i

∫ t

0
%(t ′) dt ′

]
ζ0. (3.18)

With the initial conditions for the group parameters ϕ(0) = 0 and β(0) = 0 we see that the
initial value ζ0 is equal to the initial value ξ0 of the original parameter ξ . Inverting (3.12) and
using (3.18) we obtain

ξ(t) = b(t) − a∗(t)ζ(t)
b∗(t)ζ(t) − a(t)

. (3.19)

We calculate further

ν = 1 − |ξ |2 = 1 − |ζ |2
|a|2 + |b|2|ζ |2 − 2Re (abζ ∗)

. (3.20)

For compact dynamics ν(t) does not approach zero, and for noncompact dynamics

lim
t→∞ ν(t) = 0. (3.21)

Taking that

|ζ | = |ζ0| (3.22)

and looking at (3.14) and (3.20) we see that ν(t) does not vanish if the group parameters ϕ and
β remain finite during time evolution. On the other hand, (3.20) can be written as

ν = 1 − |ζ |2
cosh2(ϕ/2) cosh2(β/2)

λ(t) (3.23)

where λ(t) is always finite, no matter what the values of ϕ and β are. Equation (3.23) shows
that the dynamics is noncompact whenever the absolute value of one of the group parameters
(or both) increases indefinitely with increasing time. We shall see later (section 4) that the
time variation of the group parameters is usually nonmonotonic, and consists rather of rapid
‘jumps’ from large positive to small negative values (with large absolute value).

If the unitary group transformation (2.28) is used the relation between original and
transformed phase parameters, ξ and ζ respectively, reads

ξ = e−i(α+γ ) sinh(µ/2) − ζ cosh(µ/2)

ζ sinh(µ/2) − cosh(µ/2)
(3.24)
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and the equation of motion for ζ has the form

ζ̇ = {ζ, 〈ζ |H2|ζ 〉} (3.25)

where H2 is given by (2.31) and (2.32). Using

〈ζ |K1|ζ 〉 = k
ζ + ζ ∗

1 − |ζ |2 (3.26)

we obtain

ζ̇ = −i�(t)(1 + ζ 2). (3.27)

This equation has a solution

ζ = ζ0 cosh[f (t)] − i sinh[f (t)]

cosh[f (t)] + iζ0 sinh[f (t)]
(3.28)

where

f (t) =
∫ t

0
�(t ′) dt ′ (3.29)

and ζ0 is the initial value of ζ , and is equal to the initial value of the original phase space
parameter ξ0. From (3.24) we obtain

1 − |ξ |2 = 1 − |ζ |2
|ζ sinh(µ/2) − cosh(µ/2)|2 . (3.30)

Equation (3.30) shows that the dynamics is noncompact when either

lim
t→∞ |ζ | = 1 (3.31)

or µ increases indefinitely with increasing time. It follows further from (3.28) that (3.31) is
true only if

lim
t→∞ |f (t)| = ∞. (3.32)

However, equation (2.32) suggests that this could never happen, since the integrand �(t)

of (3.29) can either oscillate in time, due to the numerator of (2.32), or go to zero if the
group parameter µ in the denominator goes to infinity. Therefore, the only criterion of the
noncompact dynamics is an indefinite increase of the group parameter µ. Note that for both
forms of the diagonalized Hamiltonian, (2.26) and (2.31), the dynamics of the transformed
group parameter ζ is compact. Only after applying the group transformation from ζ to ξ can
one see the true character of the dynamics in the original Lobachevskii plane.

An alternative description of the dynamics of the SU(1, 1) phase space can be given by
the time evolution operator. The time evolution of the state (cf (2.21))

|ξ ′; t〉 = exp[iα(t)K0]|ξ ; t〉 (3.33)

is generated by the Hamiltonian H ′ (2.22), so the time evolution operator fulfills

ih̄
∂S(t)

∂t
= H ′(t)S(t) (3.34)

with the initial condition S(0) = 1. To solve (3.34) we use a method similar to that developed
by Dattoli et al [28] and [18], based on the Wei–Norman [29] and Magnus [30] rigorous
algebraic procedure. We are looking for the evolution operator in the form

S(t) = exp[−ih(t)K2] exp[−ig(t)K1] exp[−ik(t)K0]. (3.35)
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Substituting (3.35) into the left-hand side of (3.34) and (2.22) into the right-hand side, and
comparing coefficients at the same generators on both sides, we obtain a system of differential
equations for the parameters h, g and k:

ġ = −2

(
ω − α̇

2

)
sinh h + 2c cosh h (3.36a)

ḣ =
[

2

(
ω − α̇

2

)
cosh h − 2c sinh h

]
tanh g (3.36b)

k̇ = 2

(
ω − α̇

2

)
cosh h − c sinh h

cosh g
. (3.36c)

Comparing (3.36) with (2.25) we see that g and h can be identified with ϕ and β respectively,
and from (3.36c) and (2.27) it follows that

k̇ = 2%(t). (3.37)

Therefore

S(t) = e−iβK2 e−iϕK1 exp

[
− 2i

∫ t

0
%(t ′) dt ′ K0

]
. (3.38)

Expression (3.38) for the time evolution operator can also be calculated from the results of
section 2. The transformed state

|ζ 〉 = eiϕK1 eiβK2 |ξ ′〉 (3.39)

evolves in time according to

|ζ 〉 = exp

[
− 2i

∫ t

0
%(t ′) dt ′ K0

]
|ξ0〉 (3.40)

where ξ0 = ζ0 is the initial value of the phase space parameter. We have therefore

|ξ ′, t〉 = e−iβK2 e−iϕK1 exp

[
− 2i

∫ t

0
%(t ′) dt ′

]
|ξ0〉 (3.41)

in agreement with (3.38). In the same way one may obtain the time evolution operator using
the unitary transformation (2.28). The result is

S(t) = e−iγ (t)K0 e−iµ(t)K2 exp

[
− 2i

∫ t

0
�(t ′) dt ′ K1

]
(3.42)

where γ and µ are solutions of (2.30) and � is given by (2.32).

4. Phase portraits of the SU (1, 1) coherent states

We shall discuss now examples of the phase space dynamics of SU(1, 1) coherent states, and
show explicitly the transition from one type of dynamics to the other. We assume that both the
amplitude and the phase of the coupling function χ depend on time and the specific form of
χ(t) is given by

χ(t) = χ0 cosω1te
−iω2t . (4.1)

This corresponds to a pumping field of frequencyω2 and modulated amplitude. We have seen in
the previous section that for constant amplitude the dynamics is compact when χ0 < ω−ω2/2
and noncompact otherwise. The time dependence of the amplitude may change this behaviour
significantly, but for a slowly varying amplitude (ω1 small) we may expect a similar behaviour
as for a constant amplitude of similar magnitude, and only larger frequencies ω1 may lead to
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significant differences in comparison with the constant-amplitude case. The type of dynamics
will be further illustrated by looking both at the shape of the ξ -trajectories and the behaviour
of the parameters of appropriate group transformations (2.23) or (2.28).

Before coming to numerical examples we shall perform a partly qualitative analytical
analysis of equations (2.15) and (2.25). The analysis of the Riccati equation (2.15) will be
based on the Floquet theory of linear differential equations with periodic coefficients ( [24]
and references therein). The idea is to replace the nonlinear first-order Riccati equation (2.15)
by a linear second-order equation [24, 25]. With this aim in mind we perform a chain of
transformations:

ξ = ζe−iα(t) (4.2)

which is equivalent to (2.21), with ζ fulfilling

ζ̇ = −i(1 + ζ 2)χ0 cosω1t + i(ω2 − 2ω)ζ. (4.3)

In the next step a conformal transformation is performed

ξ = i
1 − η

1 + η
(4.4)

leading also to the Riccati equation with constant coefficient at the quadratic term

η̇ = ηχ0 cosω1t − i

2
(ω2 − 2ω)(1 − η2). (4.5)

The third transformation reads

η = 2i

ω2 − 2ω

q̇

q
(4.6)

where q is a new unknown function fulfilling the second-order linear differential equation,
which in terms of the dimensionless variable x = ω1t can be written as

q ′′ − 2γ0 cos x · q ′ +
ε2

4
q = 0 (4.7)

where γ0 = χ0/ω1, ε = (ω2 − 2ω)/ω1 and the prime denotes differentiation with respect to
x, and q(0) = 1, q ′(0) = −iε/2, consistent with ξ(0) = 0. This is an equation with periodic
coefficients and to analyse properties of the solutions one can apply the Floquet theory [25].
We consider two real fundamental solutions u(x) and v(x) such that u(0) = 1, u′(0) = 0 and
v(0) = 0, v′(0) = 1. There exists a solution f (x) to (4.7) fulfilling the Floquet condition
f (x + 2π) = λf (x), where λ is a solution of the characteristic equation

λ2 + [u(2π) + v′(2π)]λ + 1 = 0. (4.8)

If |u(2π)+v′(2π)| < 2 there are two complex mutually conjugate solutions with unit modulus,
|λ1,2| = 1. If |u(2π) + v′(2π)| > 2 there are two real solutions, one with the absolute value
bigger than unity and the other with the absolute value smaller than unity. A general solution
to (4.7) has the form

q(x) = exp
( x

2π
ln λ1

)
F1(x) + exp

( x

2π
ln λ2

)
F2(x) (4.9)

where F1(x) and F2(x) are periodic functions which can be expanded in the Fourier series.
The case of complex roots of (4.8) results in the oscillatory character of the solutions to (4.7)
and, in the language of the coherent state orbits, to compact dynamics with the ξ trajectories
confined to a compact region inside a unit circle. If, however, the solutions of (4.8) are real then
taking |λ1| > 1 we observe that first term in (4.9) oscillates with increasing amplitude, whereas
the second one tends to zero for x → ∞, so that for large x only the first term survives. This
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leads to unstable solutions of (4.7) corresponding to noncompact dynamics, where ξ -orbits
approach the unit circle.

We performed three types of calculation of the ξ -orbits: by direct numerical solution of the
Riccati equation (2.15), by solving the linear equation (4.7) numerically and then finding the
orbits from (4.2)–(4.6) and, finally, calculating the q(x)-function analytically using a method
similar to that described in [24] with the Floquet coefficients λi found numerically. In this
last case the accuracy of the Floquet coefficients was tested by a consistency check, i.e. the
counterpart of equation (6.13) in [24]. Not surprisingly, all three methods resulted in the same
shapes of the ξ -orbits, and exactly the same time dependence of 1 − |ξ |2, Re ξ , Im ξ etc.

Another interesting mathematical question refers to a singular behaviour of the group
transformation parameters ϕ and β in the case of noncompact dynamics. It follows from (3.23)
that these parameters should increase indefinitely, and it has been mentioned that variation in
time of ϕ and β is nonmonotonic with rapid jumps from large positive to small negative values
(with large absolute values). To examine solutions of (2.25) close to the singular point, where
the parameter β is positive and large enough, we can approximate the hyperbolic sine and
cosine by exp (β)/2. We choose the initial value of time, t0, close to the singular point with
the corresponding values of β and ϕ equal to β0 and ϕ0 respectively. Equations (2.25) are
approximated by

ϕ̇ = −eβ [6ω − c(t)] (4.10a)

β̇ = eβ [6ω − c(t)] tanh ϕ (4.10b)

where 6ω = ω − ω2/2 and c(t) = χ0 cosω1t . Dividing equations (4.10a) and (4.10b) by
each other and integrating by separation of variables we obtain

cosh ϕ = Ae−β (4.11)

where

A = eβ0 cosh ϕ0. (4.12)

It follows from (4.11) and (4.12) that for β > β0 ϕ < ϕ0, i.e. the parameter ϕ decreases
close to the singularity of β. Expressing tanh ϕ by β from (4.11), substituting into (4.10b) and
integrating by separation of variables, we obtain β(t) close to the singular point

β(t) = −1

2
ln

{
1

A2
+

[
e−β0 − 6ω(t − t0) +

∫ t

t0

c(τ ) dτ

]2}
. (4.13)

For large β0 and ϕ0 the constant A is also large and A−2 is small. The logarithmic function
in (4.13) acquires maximum absolute value for the value of t = ts given as a solution of the
equation

e−β0 − 6ω(ts − t0) +
∫ ts

t0

c(τ ) dτ = 0. (4.14)

Due to the very small value of A−2 the right-hand side of (4.13) is large, corresponding to
singularity of the parameter β with cusplike behaviour clearly visible e.g. in figure 2(c).

To find ϕ(t) close to singularity we substitute (4.13) into (4.10a) and integrate. This gives

ϕ(t) = ϕ0 + β0 − ln 2 + ln
[
u(t) +

√
A−2 + u(t)2

]
(4.15)

where we denoted for brevity

u(t) = e−β0 − 6ω(t − t0) +
∫ t

t0

c(τ ) dτ. (4.16)
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Figure 1. (a) Phase space trajectory, and (b)–(e) time dependence of group parameters ϕ, β, µ

and γ in the noncompact case with χ0 = 0.5, ω2 = 1.934 and ω1 = 0.0123. Values of the
Floquet coefficients are λ1 = −7.49 × 1069 and λ2 = −1.35 × 10−70. See text for more detailed
description.

At the singular point of β(t), i.e. for t = ts such that u(ts) = 0 (cf (4.14)), the value of ϕ is

ϕ(ts) = ϕ0 + β0 − ln 2 − ln A = 0 (4.17)

(cf (4.12)) so that ϕ decreases very rapidly from ϕ0 to zero. This can be seen e.g. in figure 3(c),
where the vanishing value of ϕ corresponds to the peak value of β. For the values of time larger
than the singular point ts u(t) is negative and quickly acquires absolute value much larger than
A−2. The parameter ϕ(t) can be then approximated by

ϕ(t) = ϕ0 + β0 − ln 2 − 2 ln A − ln |u(t)| ≈ − ln A − ln |u(t)|. (4.18)

The time-dependent term in (4.18) is a slowly varying function of time with values small
compared with remaining terms. Therefore, after passing the singular point ϕ(t) is negative
and slowly varying with large absolute value, until the next singular point is reached. Behaviour
of this type can be seen for example in figure 3(c) or 6(c). At the next singular point the peak
value ofβ is negative andϕ jumps rapidly from negative to large positive values. This behaviour
can be qualitatively analysed in a similar way as previously with the approximation to (2.25)
appropriate for β < 0 and |β| � 1.

In the numerical examples we measure χ0, ω1 and ω2 in units of the oscillator frequency
ω, and the dimensionless time is τ = ωt . We choose first

χ0 = 0.5 ω2 = 1.934. (4.19)

In the case of constant amplitude these values of the parameters lead to noncompact dynamics.
Figure 1(a) shows the phase space trajectory for small ω1 = 0.0123; we can see that the

trajectory approaches the unit circle very quickly. The dependence of the group parameters ϕ
and β on time is shown in figures 1(b) and (c) respectively. We can see that both parameters
exhibit some sort of singular behaviour with rapid jumps ofϕ from positive to negative and back
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ϕ

Figure 2. Same as figure 1 with ω1 = 0.123. Values of the Floquet coefficients are λ1 =
−6.17 × 105 and λ2 = −1.62 × 10−6.

Figure 3. (a) Phase space trajectory, (b) 1 −|ξ |2 and (c)–(f ) time dependence of group parameters
ϕ, β, µ and γ in the noncompact case with χ0 = 0.5, ω2 = 1.934 and ω1 = 0.362. Values of the
Floquet coefficients are λ1 = −2.91 and λ2 = −0.34.

to positive values, and cusplike singularities of β. Absolute values of ϕ increase after every
‘jump’ (this is even more visible in further examples of noncompact dynamics, figures 3(c)



8096 A Bechler

Figure 4. (a) Phase space trajectory and (b)–(e) time dependence of group parameters ϕ, β, µ

and γ in the compact case with χ0 = 0.5, ω2 = 1.934 and ω1 = 1.125. Values of the Floquet
coefficients are λ1 = 0.98 − 0.22i and λ2 = 0.98 + 0.22i.

or 6(c)), and the peak values of β are relatively large. For this reason the right-hand side
of (3.23) tends to zero in the long time run. The values of ϕ are large when β is small and vice
versa—wheneverϕ passes through zeroβ reaches its extremum value at the cusp. In both cases
there are regions of rapid variations of the group parameters difficult to handle numerically,
so the time dependence of ϕ and β is shown in a shorter time interval than more regular and
smooth parameters µ and γ (see below). As can be further seen from figure 1(d) the group
parameter µ (cf (2.30) goes to minus infinity and the parameter γ , figure 1(e), increases with
regions of slow variation separated by periods with large positive values of the derivative.
However, both these parameters behave in a much more regular way than ϕ and β.

For ω1 an order of magnitude smaller (ω1 = 0.123) we see from figure 2(a) that the
dynamics is still noncompact. The behaviour of group parameters ϕ and β is shown in
figures 2(b) and (c), where regions of rapid variations and sharp peaks are clearly visible. It is
also clearly seen that the parameter β develops a series of sharp peaks during time evolution, as
mentioned above. The peaks occur at the same values of time at which the parameter ϕ jumps
rapidly. Parameters µ and γ show similar behaviour as in the previous case with a general
tendency to increase their absolute values.

The phase space dynamics keeps its noncompact character up to values of ω1 equal to
approximately 0.365. For ω1 = 0.362 (figure 3(a)) trajectory approaches the unit circle in
a long run, but may temporarily return to the internal region, as can be seen from the plot
of 1 − |ξ |2 (figure 3(b)). Figures 3(c) and (d) show characteristic behaviour of the group
parameters ϕ and β with rapid jumps of the former and cusplike behaviour of the latter, with
peaks occurring again for the time values at which ϕ varies rapidly.

With increasing value of the frequencyω1 the dynamics changes its character and becomes
compact. This is illustrated in figure 4 obtained for ω1 = 1.125. The trajectory in the phase
space is now confined to the internal region with a diameter smaller than unity, and does not
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γ

Figure 5. (a) Phase space trajectory, (b) 1 −|ξ |2 and (c)–(f ) time dependence of group parameters
ϕ, β, µ and γ in the transient case with χ0 = 2.2, ω2 = 1.934 and ω1 = 1.125. Values of the
Floquet coefficients are λ1 = −0.86 − 0.51i and λ2 = −0.86 + 0.51i.

approach the unit circle. The parameters ϕ and β remain bounded and exhibit periodic time
dependence (figures 4(b) and (c)). The same is also true for the parameter µ (figure 4(d)),
whereas γ increases to infinity.

We expect that a return to a noncompact type of dynamics should occur for increasing
values of χ0. Therefore, further numerical calculations were performed for fixed ω1 = 1.125
and ω2 = 1.934, and with gradually increasing values of χ0. The dynamics remains compact
for χ0 increasing up to χ0 ≈ 2.2 (figure 5). It might seem from figure 5(a) that the phase
space trajectory approaches the unit circle, but the plot of 1 −|ξ |2 (figure 5(b)) shows periodic
deviations from small values, which indicates that trajectory returns periodically closer to the
centre of the unit circle. This transient behaviour is also reflected by the oscillatory time
dependence of the group parameters, especially ϕ and µ (figures 5(c) and (e), respectively),
which remain finite, though they may acquire relatively large absolute values. For χ0 > 2.2
the dynamics becomes noncompact again, with the phase space trajectory approaching the unit
circle without returns to the internal region of the circle. This is shown in figure 6, where we
can also see from figures 6(b) that the approaching of the unit circle is not quite monotonic.
Note also characteristic behaviour of the group parameters ϕ and β similar in shape to that of
figure 3.

We note that for a periodically modulated amplitude the transition from compact to
noncompact trajectories in the phase space occurs at much larger values of χ0 than in the
case of time-independent amplitude. In this latter case transition between the two types of
dynamics takes place for χ0 = ω − ω2/2, i.e. with ω2/ω = 1.9347 the transition should
occur for χ0 ≈ 0.03ω. For the amplitude of the pumping field oscillating with frequency
ω1 = 1.1256 the transition occurs at χ0 ≈ 2.2ω, i.e. two orders of magnitude larger. This is
caused by rapid oscillations of the amplitude, and repeating returns of the system to a compact
region, where the absolute value of the amplitude is smaller than ω − ω2/2. As a result the
transition of the dynamics to the noncompact regime is significantly ‘retarded’, in the sense
that much larger values of the parameter χ0 are needed for the trajectories to approach the unit
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Figure 6. (a) Phase space trajectory, (b) 1 −|ξ |2 and (c)–(f ) time dependence of group parameters
ϕ, β, µ and γ in the noncompact case with χ0 = 2.5, ω2 = 1.934 and ω1 = 1.125. Values of the
Floquet coefficients are λ1 = −7.26 and λ2 = −0.14.

circle. On the other hand, for fixed χ0 > ω−ω2/2 and varying frequency ω1 of the amplitude
modulation we observe noncompact trajectories for small ω1, or slowly varying amplitude.
With increasing modulating frequency the trajectories become confined to a compact region
inside the unit circle, since then χ0 is not large enough to ‘pull’ the trajectory to the boundary
of the unit circle.

5. Final remarks

We have investigated classical dynamics of the SU(1, 1) coherent states using transformations
diagonalizing the time-dependent Hamiltonian given as a linear combination of the generators
of the SU(1, 1) group. The diagonalizing transformation could be chosen to reduce the
Hamiltonian either to the compact generator K0, or to the noncompact generator K1. An
exception is provided by the case of resonant coupling, for which the phase α = 2ωt , and the
diagonalized Hamiltonian can be expressed only byK1, as can be seen from (2.22). Trajectories
of the coherent states in the SU(1, 1) phase space (Lobachevskii plane) can be divided into
two classes: compact and noncompact ones. In the first case the trajectory occupies a compact
region inside the unit circle, with diameter smaller than unity. In contrast to this, noncompact
trajectories approach the boundary of the phase space with increasing time. In terms of the
group transformations diagonalizing the Hamiltonian the character of the phase space trajectory
is reflected in the time behaviour of the group transformation parameters. In the compact case
the group parameters exhibit oscillatory behaviour with nonincreasing amplitudes, whereas
for noncompact trajectories absolute values of the group parameters increase to infinity with
increasing time. The parameters of the transformation reducing the Hamiltonian to the compact
generator K0 exhibit an interesting singular behaviour for noncompact trajectories. The
parameterϕ (cf (2.23)) jumps rapidly from large positive to negative values with large modulus.
The parameter β shows characteristic sharp peaks separated by periods of slow variation with
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small values of the parameters. On the other hand, parameters of the transformation reducing
the Hamiltonian to K1 show much more regular behaviour, with the parameter µ (cf (2.28))
either oscillating (for compact trajectories) or increasing to infinity, and γ always increasing.

Appendix A

We give here transformation formulae for the generators of SU(1, 1):

eiβK2K0e−iβK2 = K0 cosh β − K1 sinh β (A.1)

eiβK2K1e−iβK2 = −K0 sinh β + K1 cosh β (A.2)

eiϕK1K0e−iϕK1 = K0 cosh ϕ + K2 sinh ϕ (A.3)

eiϕK1K2e−iϕK1 = K0 sinh ϕ + K2 cosh ϕ (A.4)

eiγK0K1e−iγK0 = K1 cos γ − K2 sin γ (A.5)

eiγK0K2e−iγK0 = K1 sin γ + K2 cos γ. (A.6)

Appendix B

We show here a relation between parameters of the group transformation U given by (2.28)
and the parameters of the coherent state. The SU(1, 1) coherent state can be parametrized as
(cf section 2)

|ξ〉 = |θ, φ〉 (B.1)

where

ξ = − tanh (θ/2)e−iφ. (B.2)

To find the time evolution equations fulfilled by θ and φ we substitute (B.2) into (2.15) and
after separating the real and imaginary parts obtain

θ̇ = −2c(t) sin (φ − α) (B.3)

φ̇ = 2ω − 2c(t) cos (φ − α) coth θ. (B.4)

Consider now the unitary transformation U (2.28) using equation (2.29) to reduce the
Hamiltonian to a form containing the group generator K1. For the parameters µ and γ we
obtain

µ̇ = −2c(t) sin γ (B.5a)

γ̇ = 2

(
ω − α̇

2

)
− 2c(t) cos γ coth µ (B.5b)

so that (θ, φ − α) and (µ, γ ) fulfill the same system of two coupled differential equations. It
can be further easily shown that the transformation U with parameters obeying (B.3) and (B.4)
leads in fact to vanishing transformed Hamiltonian, so that the transformed state, |ζ 〉, is time
independent and the parameter ζ preserves its initial value ζ0. Taking for simplicity ζ0 = 0
and using (3.24) we obtain

ξ = − tanh (µ/2)e−i(α+γ ) (B.6)

which is the same as (B.2) with θ = µ and φ = α + γ .
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